
Fig 3.  Spatial regulation. A spatial confidence algorithm is applied to a 
binary mask output of a segmentation algorithm to assign initial
confidence map values. The algorithm is described in figure 3 and 
consists of: 1) Smooth image intensity: This step smoothes the image 
intensity by using a 5X5 average filter. 2) Get minimum and maxi mum 
intensity:  This step determines the minimum (min) and maximum (max) 
intensity in a 5X5 dilated mask area of each object. 3) Confidence by 
standardization: This step creates initial confidence by normalization 
using the minimum and maximum values.

4) Confidence refinement by normalization:  This step calculates
intensity at the 75 percentile inside the segmentation mask (IL).  The 
confidence is normalized by IL using the following method:      

5) Confidence conditioning: This step conditions the confidence by 
setting the value to zero at the mask corner when Avg(mask,3x3) < 128
The spatially regulated segmentation algorithm performed well in the 
test set movies and was tested without any change in parameters.
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Introduction

Enabled by newly available molecular probes and advanced microscopes, quantitative 
image based synaptic vesicle recycling assays using time-lapse digital imaging have become 
invaluable to basic research. There is broad interest in adapting these assays to a high 
throughput imaging format for applied research applications (e.g. chemical genomics, drug 
discovery). This requires automated image recognition software to detect and define labeled 
axon terminals in the experimental images, extract the raw fluorescence measurements and 
perform kinetic modeling to estimate the time constant of vesicular reuse (τ). The achievable 
sensitivity of axon terminal segmentation and accuracy of measurement extraction and 
subsequent τ estimation is limited by the often weak and unstable signal rec eived from the 
fluorescently labeled molecules, subject to image noise and variations from illumination, focusing 
and temporal movement. This represents a significant challenge to the analysis algorithm and 
therefore limits the quality of assay outcomes.  

In this study, we have developed and validated novel and robust software methods of 
spatial-temporal regulation (STR) that enhance image signal and reduce image noise and 
variations to improve the quantitative analysis of synaptic vesicle recycling.  The STR methods 
utilize the spatial-temporal signal consistency to improve axon terminal detection, measurement 
extraction and τ estimation. The current study results show that STR improves axon terminal 
detection sensitivity and specificity, axon terminal segmentation accuracy, and τ  estimation 
accuracy across all levels of simulated noise. 

Materials and Methods
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Conclusion
We have developed and validated novel image recognition methods w hich make use of the spatial 

temporal time-lapse image content to enhance the image signal and reduce image noise and variations to 
improve the quantitative analysis outcomes.  We validated these spatial temporal regulation methods using 
time-lapse image sets from an FM dye -based assay of synaptic vesicle recycling, as well as synthetically 
created time-lapse movies.  We found that the STR methods provide significant improvements in axon terminal 
detection sensitivity and specificity, axon terminal segmentation accuracy and τ fitting accuracy for both normal, 
simulated, and noise-added conditions. 

We believe the methods of spatial and temporal regulation validated here for the synaptic recycling assay 
provide a good baseline for subcellular time -lapse assay analyses, and could be applicable to a broad range of 
subcellular assays.  

Fig 2.  Confidence maps used for regulation. Our 
STR methods make use of confidence maps rather 
than conventional binary segmentation masks.  
Spatial and temporal information from the entire 
movie can be used to adjust the confidence weighting 
at the individual pixel level to improve the noise 
immunity of the automated analysis.(A) Original 
image grayscale intensity values reveal an axon 
terminal labeled with FM dye.  (B) Binary masks 
make a crisp on / off association of pixels to objects. 
(C) In contrast, confidence maps make a probabilistic 
association of pixels to objects using a confidence 
function.  Non-binary, the confidence map encodes a 
confidence score between 0 and 255. 

Table 1. Spatially regulated segmentation is 
more sensitive, specific and accurate than 
benchmark. The spatially regulated segmentation 
result was compared against a benchmark 
segmentation algorithm to establish a sensitivity, 
specificity and segmentation accuracy baseline for 
our approach. Results show that spatially regulated 
segmentation performed better than the benchmark 
with statistical significance in all tests. (A) Detection 
sensitivity for spatially regulated confidence map 
(test) and benchmark segmentation method. (B)
McNemar test results for detection sensitivity: ?2 
values and b/a ratios as well as p values at all 
noise levels. (C) Positive predictive value of test 
and benchmark segmentation. (D) McNemar test 
results for positive predictive value. ?2 values and 
b/a ratios as well as p values are provided at all 
noise levels. (E )Segmentation error comparison of 
test and benchmark methods including p values. 

Fig 4. Temporal Regulation. We derived and 
implemented a nonlinear regression method 
for the constrained estimation of the 
exponential dissociation model parameter τ. 
The temporal confidence function improves 
the τ estimation by adjusting the confidence 
map values based on their temporal reliability.  
Multiple iterations of model fitting refinements 
progressively reduce the effect of data 
variation and thereby increase the accuracy 
and repeatability of the model fitting result.  
The figure (A) shows an example of 
measured data and the estimated τ curve for 
a synthetic object from a  simulated image 
with noise σ = 4.  (B) Shows the weights 
calculated for each time point.
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Fig 1. Real images and simulated image sets were used in the study. Study set consist of (i) a set of synaptic 
vesicle recycling movies using FM 4-64 (84 movies) (A - E), (ii) four sets where noise from a zero mean Gaussian 
distribution with four different standard deviations was added to these recycling movies (336 movies), (iii) two sets of 
sixteen simulated movies where the individual synthetic synapses are destained with a known τ wherein (iv) one set’s 
synthetic synapses are subject to a random sub-pixel shift (32 movies), and (v) five sets of images where five levels of 
zero mean Gaussian noise was added to the simulated movies (160 movies) (F – H).  Half of the movies of synaptic 
vesicle recycling and associated noise-added were separated into a training group (210 movies), and half into a testing 
group (210 movies) by stratified sampling. The training group was used for algorithm development and the testing group 
for performance evaluation. 
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Tau Error Results: Simulated Movies with Shift
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Fig 5.  τ estimation accuracy study results. τ error was 
analyzed for (i) baseline (binary) method not subject to 
spatial or temporal regulation, (ii) test method subject to 
spatial regulation only, (iii) test method subject to temporal 
regulation only, and (iv) test method subject to spatial and 
temporal regulation using both simulated and real image 
sets. The results in (A – C) show that spatial regulation 
alone improves τ estimation and is more robust to noise with 
statistical significance.  Adding temporal regulation can 
further increase the τ fitting accuracy. (A) shows the results 
for the 16 simulated with shift movies across 6 noise levels. 
(B) shows the results for the 42 real moves across five noise 
levels. Performance from spatial temporal regulation method 
is compared against performance using our segmentation 
with no STR. (C) compares spatial regulation, spatial and 
temporal regulation, and no regulation outcomes. The p-
values are calculated from a t -test comparing τ error results 
of the non regulated test method to both the spatial 
regulation only, and spatial and temporal regulation methods 
using simulated movies (16 movies), simulated with sub -
pixel shift movies (16 movies), and real movies test sets (42 
movies).  Spatial regulation only based improvements using 
real data have higher p values, but a combination of the 
spatial and temporal regulation can clearly reduce the error 
with statistical significance. The improvements delivered by 
spatial temporal regulation are significant for all but the 
highest noise level. 
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Tau Error Results: Real Movies
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